Home
Class 11
MATHS
The coefficient of x^r[0lt=rlt=(n-1)] in...

The coefficient of `x^r[0lt=rlt=(n-1)]` in lthe expansion of `(x+3)^(n-1)+(x+3)^(n-2)(x+2)+(x+3)^(n-3)(x+2)^2++(x+2)^(n-1)` is `^n C_r(3^r-2^n)` b. `^n C_r(3^(n-r)-2^(n-r))` c. `^n C_r(3^r+2^(n-r))` d. none of these

Text Solution

Verified by Experts

We have
`(x+3)^(n-1)+(x+3)^(n-2)(x+2)+(x+3)^(n-3)(x+2)^(2)+"....."+(x+2)^(n-1)`
`=((x+3)^(n)-(x+2)^(n))/((x+3)-(x+2))=(x+3)^(n)-(x+2)^(n)`
`( :'(x^(n)-a^(n))/(x-a)=x^(n-1)+x^(n-2)a^(1)+x^(n-3)a^(2)+"....."+a^(n-1))`
Therefore, coefficient of `x^(r)` in the given expression is equal to coefficient of `x^(r)` in `[(x+3)^(n)-(x+2)^(n)]`, which is given by
`.^(n)C_(r)3^(n-r)-.^(n)C_(r)2^(n-r)=.^(n)C_(r)(3^(n-r)-2^(n-r))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Find the coefficient of x^n in the polynomial (x+^n C_0)(x+3^n C_1)xx(x+5^n C_2)[x+(2n+1)^n C_n]dot

Find the sum of sum_(r=1)^n(r^n C_r)/(n C_(r-1) .

Prove that (r+1)^n C_r-r^n C_r+(r-1)^n C_2-^n C_3++(-1)^r^n C_r = (-1)^r^(n-2)C_rdot

The value of sum_(r=0)^(3n-1)(-1)^r 6nC_(2r+1)3^r is

If (1+2x+x^2)^n=sum_(r=0)^(2n)a_r x^r ,then a= (^n C_2)^2 b. ^n C_rdot^n C_(r+1) c. ^2n C_r d. ^2n C_(r+1)

If (1-x^2)^n=sum_(r=0)^n a_r x^r(1-x)^(2n-r),t h e na_r is equal to a.) ^n C_r b.) ^nC_r3^r c.) ^2n C_r d.) ^nC_r2^r

the value of Sigma_(r=2)^(n) (-2)^(r ) |{:( ""^(n-2)C_(r-2),,""^(n-2)C_(r-1),,""^(n-2)C_(r)),(-3,,1 ,,1),(2,,-1,,0):}| (n gt 2)

If the coefficients of a^r-1 , a^r and a^r+1 in the expansion of (1+a)^n are in arithmetic progression, prove that n^2 - n(4r+1)+ 4r^2 - 2 =0.

If sum_(r=0)^nr/(^n C_r)=sum_(r=0)^n(n^2-3n+3)/(2.^n C_r) , then a. n=1 b. n=2 c. n=3 d. none of these

Prove that .^(n)C_(0) - ^(n)C_(1) + .^(n)C_(2)- ^(n)C_(3) + "…" + (-1)^(r) + .^(n)C_(r) + "…" = (-1)^(r ) xx .^(n-1)C_(r ) .