Home
Class 11
MATHS
The value of ^n C1+^(n+1)C2+^(n+2)C3++^(...

The value of `^n C_1+^(n+1)C_2+^(n+2)C_3++^(n+m-1)C_m` is equal to (a)`^m+n C_(n-1)` (b)`^m+n C_(n-1)` (c)`^mC_(1)+^(m+1)C_2+^(m+2)C_3++^(m+n-1)` (d)`^m+1C_(m-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of C(n, 0) - C(n, 1) + C(n, 2) - C(n, 3) +.......+(-1)^(n)C(n, n) =

The value of sum_(r=1)^n(-1)^(r+1)("^n C r)/(r+1) is equal to a. -1/(n+1) b. 1/n c. 1/(n+1) d. n/(n+1)

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

In .^(2n)C_(3) :.^(n)C_(3) = 11 : 1 then n is

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

If m=""^(n)C_(2),"then """^(m)C_(2)=

The value of determinant |1 1 1^m C_1^(m+1)C_1^(m+2)C_1^m C_2^(m+1)C_2^(m+2)C_2| is equal to 1 b. -1 c. 0 d. none of these