Home
Class 11
MATHS
Let (1+x^2)^2(1+x)^n=sum(k=0)^(n+4)ak x^...

Let `(1+x^2)^2(1+x)^n=sum_(k=0)^(n+4)a_k x^kdotIfa_1,a_2a n d a_3` are in arithmetic progression, then the possible value/values of `n` is/are a. 5 b. 4 c. `3` d. `2`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let (1 + x)^(n) = 1 + a_(1)x + a_(2)x^(2) + ... + a_(n)x^(n) . If a_(1),a_(2) and a_(3) are in A.P., then the value of n is

If for n in I , n > 10 ;1+(1+x)+(1+x)^2++(1+x)^n=sum_(k=0)^n a_k*x^k , x!=0 then

If cot^(-1)((n^2-10 n+21. 6)/pi)>pi/6, where x y<0 then the possible values of n is (a)3 (b) 2 (c) 4 (d) 8

The function f(x)=(x^2-4)^n(x^2-x+1),n in N , assumes a local minimum value at x=2. Then find the possible values of n

Given (1-x^(3))^(n)=sum_(k=0)^(n)a_(k)x^(k)(1-x)^(3n-2k) then the value of 3*a_(k-1)+a_(k) is

If sin^2x-2sinx-1=0 has exactly four different solutions in x in [0,npi] , then value/values of n is/are (n in N) 5 (b) 3 (c) 4 (d) 6

If (4x^(2) + 1)^(n) = sum_(r=0)^(n)a_(r)(1+x^(2))^(n-r)x^(2r) , then the value of

If sum_(r=0)^(2n)a_r(x-2)^r=sum_(r=0)^(2n)b_r(x-3)^ra n da_k=1 for all kgeqn , then show that b_n=^(2n+1)C_(n+1) .

If the 4th term in the expansion of (a x+1//x)^n is 5/2, then (a) a=1/2 b. n=8 c. a=2/3 d. n=6

If f(x)={(1-cos(1-cos x/2))/(2^m x^n)1x=0,x!=0 and f(0)=1 is continuous at x=0 then the value of m+n is a. 2 b. 3 c. -3 d. 7