Home
Class 11
MATHS
If for z as real or complex, (1+z^2+z^4...

If for `z` as real or complex, `(1+z^2+z^4)^8=C_0+C1z2+C2z4++C_(16)z^(32)t h e n` (a)`C_0-C_1+C_2-C_3++C_(16)=1` (b)`C_0+C_3+C_6+C_9+C_(12)+C_(15)=3^7` (c)`C_2+C_5+C_6+C_(11)+C_(14)=3^6` (d)`C_1+C_4+C_7+C_(10)+C_(13)+C_(16)=3^7`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate |^x C_1^x C_2^x C_3^y C_1^y C_2^y C_3^z C_1^z C_2^z C_3|

If C_(r) = .^(n)C_(r) then prove that (C_(0) + C_(1)) (C_(1) + C_(2)) "….." (C_(n-1) + C_(n)) = (C_(1)C_(2)"…."C_(n-1)C_(n))(n+1)^(n)//n!

(C_0+C_1)(C_1+C_2)(C_2+C_3)(C_3+C_4)...........(C_(n-1)+C_n)= (C_0C_1C_2.....C_(n-1) (n+1)^n)/(n!)

if (1 + C_(1)/C_(0))(1 + C_(2)/C_(1)) (1 + C_(3)/C_(2)) ...... (1 + C_(n)/C_(n - 1))is

Find the sum ^10 C_1+^(10)C_3+^(10)C_5+^(10)C_7+^(10)C_9dot

Show that |^x C_r^x C_(r+1)^x C_(r+2)^y C_r^y C_(r+1)^y C_(r+2)^z C_r^z C_(r+1)^z C_(r+1)|=|^x C_r^(x+1)C_(r+1)^(x+2)C_(r+2)^y C_r^(y+1)C_(r+1)^(y+2)C_(r+2)^z C_r^(z+1)C_(r+1)^(z+2)C_(r+1)| .

If ""^(18)C_(15)+2(""^(18)C_(16))+""^(17)C_(16)+1=""^(n)C_(3) , then n =

If (1+x)^n=C_0+C_1x+C2x2++C_n x^n , t h e n 'C_0-(C_0+C_1+)+(C_0+C_1+C_2)-(C_0+C_1+C_2+C_3)+(-1)^(n-1)(C_0+C_1+ C_(n-1))',w h e r e n is

The value of (.^(21)C_(1) - .^(10)C_(1)) + (.^(21)C_(2) - .^(10)C_(2)) + (.^(21)C_(3) - .^(10)C_(3)) + (.^(21)C_(4) - .^(10)C_(4)) + … + (.^(21)C_(10) - .^(10)C_(10)) is

If (1+x)^n=C_0+C_1x+C2x2++C_n x^n , n in N ,t h e nC_0-C_1+C_2-+(-1)^(n-1)C_(m-1), is equal to (mltn)