Home
Class 11
MATHS
If (1+x)^n=C0+C1x+C2x^2+.......+Cn x^n ...

If `(1+x)^n=C_0+C_1x+C_2x^2+.......+C_n x^n` , then show that the sum of the products of the coefficients taken two at a time, represented by `sumsum_(0lt=iltjlt=n) ``"^nc_i``"^n c_j` is equal to `2^(2n-1)-((2n)!)/ (2(n !)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sum sumsum_(0lt=ilt=jlt=n)^ nC_i^n C_j

Find the value of sumsum_(0lt=i

Find the value of sumsum_(1leilejlt=n-1)(ij)^n c_i^n"" c_jdot

Find the sum sumsum_(i!=j)^ nC_i^n C_j

If (1 - x)^(n) = C_(0) + C_(1)x + C_(2)x^(2) + ......... + C_(n)x^(n) , then the value of 1.C_(1) + 2.C_(3) + 3.C_(3) + ......... + n.C_(n) =

If (1+x)^n=C_0+C_1x+C2x2++C_n x^n , n in N ,t h e nC_0-C_1+C_2-+(-1)^(n-1)C_(m-1), is equal to (mltn)

The value of the expansion (sumsum)_(0 le i lt j le n) (-1)^(i+j-1)"^(n)C_(i)*^(n)C_(j)=

If sinx+cos e cx=2, then sin^n x+cos e c^n x is equal to 2 (b) 2^n (c) 2^(n-1) (d) 2^(n-2)

If ""^(n)C_(r) denotes the number of combinations of n things taken r at a time, then the expression ""^(n)C_(r+1)+""^(n)C_(r-1)+2xx""^(n)C_(r) , equals

Prove that the coefficient of x^n in the expansion of (1+x)^2n is twice the coefficient of x^n in the expansion of (1+x)^2n-1 .