Home
Class 11
MATHS
For any positive integer (m,n) (with nge...

For any positive integer (m,n) (with `ngeqm`), Let `((n),(m)) =.^nC_m` Prove that `((n),(m)) + 2((n-1),(m))+3((n-2),(m))+....+(n-m+1)((m),(m))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that tan^(-1)((m)/(n))-tan^(-1)((m-n)/(m+n))=(pi)/(4).

If x and y are positive real numbers and m, n are any positive integers, then Prove that (x^n y^m)/((1+x^(2n))(1+y^(2m))) lt =1/4

The number of ordered pairs of positive integers (m,n) satisfying m le 2n le 60 , n le 2m le 60 is

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

Show that the square of any positive integer of the form 3m or 3m + 1 for some integer n.

If n is a positive integer, prove that |I m(z^n)|lt=n|Im(z)||z|^(n-1.)

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_m-2n(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))

Let m, in N and C_(r) = ""^(n)C_(r) , for 0 le r len Statement-1: (1)/(m!)C_(0) + (n)/((m +1)!) C_(1) + (n(n-1))/((m +2)!) C_(2) +… + (n(n-1)(n-2)….2.1)/((m+n)!) C_(n) = ((m + n + 1 )(m+n +2)…(m +2n))/((m +n)!) Statement-2: For r le 0 ""^(m)C_(r)""^(n)C_(0)+""^(m)C_(r-1)""^(n)C_(1) + ""^(m)C_(r-2) ""^(n)C_(2) +...+ ""^(m)C_(0)""^(n)C_(r) = ""^(m+n)C_(r) .

If a costheta+bsintheta=m and a sintheta-bcostheta=n," then Prove that " a^(2)+b^(2)=m^(2)+n,

If x^m occurs in the expansion (x+1//x^2)^ 2n then the coefficient of x^m is ((2n)!)/((m)!(2n-m)!) b. ((2n)!3!3!)/((2n-m)!) c. ((2n)!)/(((2n-m)/3)!((4n+m)/3)!) d. none of these