Home
Class 11
MATHS
If n is a positive integer, prove that 1...

If `n` is a positive integer, prove that `1-2n+(2n(2n-1))/(2!)-(2n(2n-1)(2n-2))/(3!)++(-1)^(n-1)(2n(2n-1)(n+2))/((n-1)!)= (-1)^(n+1)(2n)!//2(n !)^2dot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ((2n)!)/(n!) =2^(n) (1,3,5,……..(2n-1)) .

Prove that ((n + 1)/(2))^(n) gt n!

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

Prove that 1^(2)+2^(2)+3^(2)+.....+n^(2)=(n(n+1)(2n+1))/6

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

For all n ge 1 prove that 1^(2)+2^(2)+ 3^(2)+4^(2)+….+n^(2)= (n(n+1)(2n+1))/(6)

Prove that (.^(n)C_(1))/(2) + (.^(n)C_(3))/(4) + (.^(n)C_(5))/(6) + "…." = (2^(n) - 1)/(n+1) .