Home
Class 11
MATHS
Given, sn=1+q+q^2+.....+q^n ,Sn=1+(q+1)...

Given, `s_n=1+q+q^2+.....+q^n ,S_n=1+(q+1)/2+((q+1)/2)^2+...+((q+1)/2)^n ,q!=1` prove that `"^(n+1)C_1+^(n+1)C_2s_1+^(n+1)C_3s_2+......+^(n+1)C_(n+1)s_n=2^n S_ndot`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

Prove that ^n C_0^n C_0-^(n+1)C_1^n C_1+^(n+2)C_2^n C_2-=(-1)^ndot

Prove that .^(n)C_(1) + 2 .^(n)C_(2) + 3 .^(n)C_(3) + "…." + n . ^(n)C_(n) = n 2^(n-1) .

Prove that "^n C_0^(2n)C_n-^n C_1^(2n-1)C_n+^n C_2xx^(2n-2)C_n++(-1)^n^n C_n^n C_n=1.

Prove that ^n C_1(^n C_2)(^n C_3)^3(^n C_n)^nlt=((2^n)/(n+1))^(n+1_C()_2),AAn in Ndot

Prove that ^m C_1^n C_m-^m C_2^(2n)C_m+^m C_3^(3n)C_m-=(-1)^(m-1)n^mdot

Prove that .^(2n)C_(n) = ( 2^(n) xx 1 xx 3 xx …(2n-1))/(n!)

Prove that: ((2n)!)/(n !)={1. 3. 5 (2n-1)}2^ndot

Prove that sum_(r=0)^ssum_(s=1)^n^n C_s^ s C_r=3^n-1.

Find the sum 1.^(n)C_(0) + 3 .^(n)C_(1) + 5.^(n)C_(2) + "….." + (2n+1).^(n)C_(n) .