Home
Class 11
MATHS
Show that x^(n) =1 + n(1 -1/x) + (n(n+1)...

Show that `x^(n) =1 + n(1 -1/x) + (n(n+1))/1.2 (1 -1/x)^(2) + ...`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that (x-1) is a factor of x ^(n)-1.

Show that the middle term in the expansion of (1 + x)^(2n) is (1.3.5.........(2n - 1))/(n!)2^(n)x^(n) , where n is a positive integer.

If 2 cos alpha = x + (1)/(x) and 2 cos beta = y + (1)/(y) , show that x^(m) y^(n) + (1)/(x^(m)y^(n)) = 2 cos (m alpha + n beta)

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

Prove that 1-^n C_1(1+x)/(1+n x)+^n C_2(1+2x)/((1+n x)^2)-^n C_3(1+3x)/((1+n x)^3)+. . .....(n+1)terms = 0

If S_(n)=(x+y)+(x^(2)+xy+y^(2))+(x^(3)+x^(2)y+y^(2)x+y^(3))+…n terms then prove that (x-y)S_(n)=[(x^(2)(x^(n)-1))/(x-1)-(y^(2)y^(n)-1)/(y-1)] .

The derivative of y=(1-x)(2-x)....(n-x) at x=1 is (a) 0 (b) (-1)(n-1)! (c) n !-1 (d) (-1)^(n-1)(n-1)!

The coefficient of 1//x in the expansion of (1+x)^n(1+1//x)^n is (n !)/((n-1)!(n+1)!) b. ((2n)!)/((n-1)!(n+1)!) c. ((2n)!)/((2n-1)!(2n+1)!) d. none of these