Home
Class 11
MATHS
Let n be a positive integer and k be a w...

Let `n` be a positive integer and `k` be a whole number, `klt=2ndot` Statement 1: The maximum value of `^2n C_ki s^(2n)C_ndot` Statement 2: `(^(2n)C_(k+1))/(^(2n)C_k)<<1,fork=0,1,2, ,n-1a n d(^(2n)C_k)/(^(2n)C_(k-1)>>1,fork=n+1,n+2, ,2n` .

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that ^n C_0 ^(2n)C_n- ^n C_1 ^(2n-2)C_n+ ^n C_2^(2n-4)C_n-=2^ndot

In .^(2n)C_(3) :.^(n)C_(3) = 11 : 1 then n is

If ""^(2n)C_(3) : ""^(n) C_(3)= 11 : 1 then n is

Statement 1: ^m C_r+^m C_(r-1)^n C_1+^mC_(r-2)^n C_2++^n C_r=0,ifm+n

Let x, y be positive real numbers and m, n be positive integers, The maximum value of the expression (x^(m)y^(n))/((1+x^(2m))(1+y^(2n))) is

If the value of "^(n)C_(0)+2*^(n)C_(1)+3*^(n)C_(2)+...+(n+1)*^(n)C_(n)=576 , then n is

Statement 1: 3^(2n+2)-8n-9 is divisible by 64 ,AAn in Ndot Statement 2: (1+x)^n-n x-1 is divisible by x^2,AAn in Ndot

The value of .^(n)C_(0) xx .^(2n)C_(r) - .^(n)C_(1)xx.^(2n-2)C_(r)+.^(n)C_(2)xx.^(2n-4)C_(r)+"…." is equal to

Let n be a positive integer and (1+x+x^2)^n=a_0+a_1x++a^(2n)x^(2n)dot Show that a_0^2-a_1^ 2+a_2^ 2++'a_2n' x^2=a_ndot

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to