Home
Class 12
MATHS
If varphi(x) is a polynomial function an...

If `varphi(x)` is a polynomial function and `varphi^(prime)(x)>varphi(x)AAxgeq1a n dvarphi(1)=0,` then `varphi(x)geq0AAxgeq1` `varphi(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

If varphi(x) is differentiable function AAx in R and a in R^+ such that varphi(0)=varphi(2a),varphi(a)=varphi(3a)a n dvarphi(0)!=varphi(a) then show that there is at least one root of equation varphi^(prime)(x+a)=varphi^(prime)(x)in(0,2a)

The general solution of the differential equation, y^(prime)+yvarphi^(prime)(x)-varphi^(prime)(x) varphi(x)=0 , where varphi(x) is a known function, is

Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot Then inte^xf(x)dx is varphi(x)= e^xf(x)

If the function f(x) increases in the interval (a , b),a n dvarphi(x) [f(x)]^2 , then varphi(x) increases in (a , b) varphi(x) decreases in (a , b) we cannot say that varphi(x) increases or decreases in (a , b)dot none of these

The root of the polynomial equation 3x -1 = 0 is

If x=varphi(t), y=psi(t),t h e n(d^(2y))/(dx^2) is (a) (varphi^(prime)psi^('')-psi'varphi' ')/((varphi^(prime))^2) (b) (varphi^(prime)psi^('')-psi'varphi' ')/((varphi^(prime))^3) (c) varphi^('')/psi^('') (d) psi^('')/varphi^('')

The second derivative of a single valued function parametrically represented by x=varphi(t)a n dy=psi(t) (where varphi(t)a n dpsi(t) are different function and varphi^(prime)(t)!=0 ) is given by (d^2y)/(dx^2)=(((dx)/(dt))((d^2y)/(dt^2))-((d^2x)/(dt^2))((dy)/(dt))/(((dx)/(dt))^2) (d^2y)/(dx^2)=(((dx)/(dt))((d^2y)/(dt^2))-((d^2x)/(dt^2))((dy)/(dt))/(((dx)/(dt))^3) (d^2y)/(dx^2)=(((d^2x)/(dt))((d^y)/(dt^2))-((d^x)/(dt^))((d^2y)/(dt^2))/(((dx)/(dt))^3) (d^2y)/(dx^2)=(((d^2x)/(dt^2))((d^y)/(dt^))-((d^2x)/(dt^2))((d^y)/(dt^))/(((dx)/(dt))^3)

A function y=f(x) satisfies (x+1)f^(prime)(x)-2(x^2+x)f(x)=(e^x^2)/((x+1)),AAx > -1. If f(0)=5, then f(x) is

Suppose that f(x) is differentiable invertible function f^(prime)(x)!=0a n dh^(prime)(x)=f(x)dot Given that f(1)=f^(prime)(1)=1,h(1)=0 and g(x) is inverse of f(x) . Let G(x)=x^2g(x)-x h(g(x))AAx in Rdot Which of the following is/are correct? G^(prime)(1)=2 b. G^(prime)(1)=3 c. G^(1)=2 d. G^(1)=3

If varphi(x)=1/(1+e^(-x))a n dS=varphi(5)+varphi(4)+varphi(3)++varphi(-3)+varphi(-4)+varphi(-5) , then the value of S is. a. 5 b. 11/2 c. 6 d. 13/2