Home
Class 12
MATHS
Let f be continuous and differentiable f...

Let `f` be continuous and differentiable function such that `f(x)` and `f'(x)` has opposite signs everywhere. Then (A) `f` is increasing (B) `f` is decreasing (C) `|f|` is non-monotonic (D) `|f|` is decreasing

Promotional Banner

Similar Questions

Explore conceptually related problems

If f:RR-> RR is a differentiable function such that f(x) > 2f(x) for all x in RR and f(0)=1, then

Let f(x) be a continuous and differentiable function such that f(x)=int_0^xsin(t^2-t+x)dt Then prove that f^('')(x)+f(x)=cosx^2+2xsinx^2

Let f be a differentiable function such that f(1) = 2 and f'(x) = f (x) for all x in R . If h(x)=f(f(x)), then h'(1) is equal to

The function f(x) = x^(2) is decreasing in

Let f: R->R be a differentiable function for all values of x and has the property that f(x)a n df^(prime)(x) has opposite signs for all value of xdot Then, (a) f(x) is an increasing function (b) f(x) is an decreasing function (c) f^2(x) is an decreasing function (d) |f(x)| is an increasing function

Let f(x) be a non-constant twice differentiable function defined on (oo, oo) such that f(x) = f(1-x) and f"(1/4) = 0 . Then

Let f:(0,oo)->R be a differentiable function such that f'(x)=2-f(x)/x for all x in (0,oo) and f(1)=1 , then

Let f:RtoR be a differentiable function such that f(x)=x^(2)+int_(0)^(x)e^(-t)f(x-t)dt . f(x) increases for

Let f:R->R be a continuous function such that |f(x)-f(y)|>=|x-y| for all x,y in R ,then f(x) will be

Let f(x): [0, 2] to R be a twice differenctiable function such that f''(x) gt 0 , for all x in (0, 2) . If phi (x) = f(x) + f(2-x) , then phi is (A) increasing on (0, 1) and decreasing on (1, 2) (B) decreasing on (0, 2) (C) decreasing on (0, 1) and increasing on (1, 2) (D) increasing on (0, 2)