Home
Class 12
MATHS
The maximum value of the function f(x)=2...

The maximum value of the function `f(x)=2x^3-15 x^2+36 x-48` on the set `A={x|x^ 2+20lt=9x}` is______.

Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of the function x^(2)e^(-2x),xgt0 is

The zero of the polynomial function f(x) = 9x^(2) - 16 are

Verify mean value theorem for the function f(x) = x^(3) - 5x^(2) _ 2x in [1, 3]

Find the absolute maximum and absolute minimum values of the function f(x) = 2x^(3) - 3x^(2) + 2 "in " -(1)/(2) le x le 4

Find the absolute maximum and absolute minimum values of the function f(x)=2x^(3)+3x^(2)-12x on [-3, 2]

Find the zero of the polynomial function f(x)=9x^(2)-36

Find the absolute maximum and minimum values of a function f given by f(x) = 2x^(3) – 15x^(2) + 36x +1 on the interval [1, 5].

Discuss the monotonicity of f(x) = 2x^(3) - 15x^(2) + 36x + 1

If S_(1) and S_(2) are respectively the sets of local minimum and local maximum point of the function, f(x)=9x^(4)+12x^(3)-36x^(2)+25, x in R , then (a) S_(1)={-2}:S_(2)={0,1} (b) S_(1)={-2,0}:S_(2)={1} (c) S_(1)={-2,1}:S_(2)={0} (d) S_(1)={-1}:S_(2)={0,2}