Home
Class 12
MATHS
If f^(prime)(x)=1/(-x+sqrt(x^2+1)) and ...

If `f^(prime)(x)=1/(-x+sqrt(x^2+1)) ` and `f(0)=(1+sqrt(2))/2` then `f(1)` is equal to- (a) ` log"(sqrt(2)+1)` (b) 1 (c)`1+sqrt(2)` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=sqrt(1+x^(2)) then

Let f(x)=int x^2/((1+x^2)(1+sqrt(1+x^2)))dx and f(0)=0 then f(1) is

If f'(x) = sqrt(x) and f(1) = 2 then f(x) is :

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these

The value of ("lim")_(xto2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these

If tan^(-1)x+2cot^(-1)x=(2pi)/3, then x , is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3) (d) sqrt(2)

Find F' (x) if F(x) = sqrt(x^2 -1) .

If cos^-1((x^2 -1)/(x^2+1))+ tan^-1 ((2x)/(x^2-1)) = (2pi)/3 , then x equal to (A) sqrt(3) (B) 2+sqrt(3) (C) 2-sqrt(3) (D) -sqrt(3)