Home
Class 12
MATHS
Prove that for any two numbers x1a n dx2...

Prove that for any two numbers `x_1a n dx_2dot` `(e^(2x_1)+e^(x_2))/3> e^((2x_1+x_2)/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that for any two numbers x_(1) and x_(2) (2e^(x_1)+e^(x_2))/(3)gte(2x_(1)+x_(2))/(3)

int_(0)^(1)e^(2x)e^(e^(x) dx =)

integrate (e^(2x))/(e^(2x)+1)

Evaluate: int(e^(2x)-2e^x)/(e^(2x)+1)dx

int(e^(x)(1+x))/(sin^(2)(xe^(x)))dx

e^(x)((x - 1)/(2x^(2)))

int(e^(tan^(-1)x))/(1+x^(2))dx :

int(e^(tan^(-1)x))/(1+x^(2))dx

Integrate the following with respect to x. (i) (e^(2x) - 1)/(e^x) " " (ii) e^(3x)(e^(2x - 1)) .

Evaluate int(dx)/(sqrt(1+e^(x)+e^(2x)))