Home
Class 12
MATHS
If f(x)=xe^(x(x−1)) , then f(x) is (a) i...

If `f(x)=xe^(x(x−1))` , then `f(x)` is (a) increasing on `[−1/2,1]` (b) decreasing on R (c) increasing on R (d) decreasing on `[−1/2,1]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x): [0, 2] to R be a twice differenctiable function such that f''(x) gt 0 , for all x in (0, 2) . If phi (x) = f(x) + f(2-x) , then phi is (A) increasing on (0, 1) and decreasing on (1, 2) (B) decreasing on (0, 2) (C) decreasing on (0, 1) and increasing on (1, 2) (D) increasing on (0, 2)

Let f(x)=xsqrt(4a x-x^2),(a >0)dot Then f(x) is a. increasing in (0,3a) decreasing in (3a, 4a) b. increasing in (a, 4a) decreasing in (5a ,oo) c. increasing in (0,4a) d. none of these

f: RvecR ,f(x) is differentiable such that f(f(x))=k(x^5+x),k!=0)dot Then f(x) is always increasing (b) decreasing either increasing or decreasing non-monotonic

The function defined by f(x)=(x+2)e^(-x) is (a)decreasing for all x (b)decreasing in (-oo,-1) and increasing in (-1,oo) (c)increasing for all x (d)decreasing in (-1,oo) and increasing in (-oo,-1)

If f(x)=2x+cot^(-1)x+log(sqrt(1+x^2)-x) then f(x) (a)increase in (0,oo) (b)decrease in [0,oo] (c)neither increases nor decreases in [0,oo] (d)increase in (-oo,oo)

Let f be the function f(x)=cosx-(1-(x^2)/2)dot Then f(x) is an increasing function in (0,oo) f(x) is a decreasing function in (-oo,oo) f(x) is an increasing function in (-oo,oo) f(x) is a decreasing function in (-oo,0)

Which of the following statement is always true? (a)If f(x) is increasing, then f^(-1)(x) is decreasing. (b)If f(x) is increasing, then 1/(f(x)) is also increasing. (c)If fa n dg are positive functions and f is increasing and g is decreasing, then f/g is a decreasing function. (d)If fa n dg are positive functions and f is decreasing and g is increasing, the f/g is a decreasing function.

Let f: R->R be a differentiable function for all values of x and has the property that f(x)a n df^(prime)(x) has opposite signs for all value of xdot Then, (a) f(x) is an increasing function (b) f(x) is an decreasing function (c) f^2(x) is an decreasing function (d) |f(x)| is an increasing function

If fogoh(x) is an increasing function, then which of the following is possible? (a) f(x),g(x),a n dh(x) are increasing (b) f(x)a n d h(x) are increasing and g(x) is decreasing (c) f(x),g(x),a n dh(x) are decreasing

Statement 1: If f(0)=0,f^(prime)(x)=ln(x+sqrt(1+x^2)), then f(x) is positive for all x in R_0dot Statement 2: f(x) is increasing for x >0 and decreasing for x<0