Home
Class 12
MATHS
IfI=int(dx)/(x^3sqrt(x^2-1)),t h e nIe q...

`IfI=int(dx)/(x^3sqrt(x^2-1)),t h e nIe q u a l s` a. `1/2((sqrt(x^2-1))/(x^3)+tan^(-1)sqrt(x^2-1))+C` b.`1/2((sqrt(x^2-1))/(x^2)+xtan^(-1)sqrt(x^2-1))+C` c.`1/2((sqrt(x^2-1))/x+tan^(-1)sqrt(x^2-1))+C` d.`1/2((sqrt(x^2-1))/(x^2)+tan^(-1)sqrt(x^2-1))+C`

Promotional Banner

Similar Questions

Explore conceptually related problems

y=tan^(-1)(x/(1+sqrt(1-x^2)))

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

int(dx)/(e^xsqrt(2e^x-1))= 2sec^(-1)sqrt(2e^x)+c -2tan^(-1)1/(sqrt(2e-1))+c 2sec^(-1)(sqrt(2)e^x)+c (d) (2sqrt(2e^x-1))/2e^x 2tan^(-1)sqrt(2e^x-1)+c

int(x^3dx)/(sqrt(1+x^2))i se q u a lto 1/3sqrt(1+x^2)(2+x^2)+C 1/3sqrt(1+x^2)(x^2-1)+C 1/3(1+x^2)^(3/2)+C (d) 1/3sqrt(1+x^2)(x^2-2)+C

If tan^(-1)(sqrt(1+x^2-1))/x=4^0 then

If y=tan^(-1)sqrt((x+1)/(x-1)),t h e n(dy)/(dx)i s (-1)/(2|x|sqrt(x^2-1)) (b) (-1)/(2xsqrt(x^2-1)) 1/(2xsqrt(x^2-1)) (d) none of these

intsqrt(e^x-1)dxi se q u a lto 2[sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)]+c sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)+c sqrt(e^x-1)+tan^(-1)sqrt(e^x-1)+c 2[sqrt(e^x-1)-tan^(-1)sqrt(e^x-1)]+c

int (x^4-1)/(x^2)sqrt(x^4+x^2+1) dx equal to (A) sqrt((x^4+x^2+1)/x) + c (B) sqrt(x^4 + 2 - 1/x^2) + c (C) sqrt(x^2 + 1/x^2 + 1) + c (D) sqrt((x^4-x^2+1)/x) + c

int(x^4-1)/(x^2sqrt(x^4+x^2+1))dx= sqrt(x^2+1/(x^2)+1)+C (sqrt(x^4+x^2+1))/(x^2)+C (sqrt(x^4+x^2+1))/x+C (d) none of these

d/(dx)[tan^(-1)((sqrt(x)(3-x))/(1-3x))]= 1/(2(1+x)sqrt(x)) (b) 3/((1+x)sqrt(x)) 2/((1+x)sqrt(x)) (d) 3/(2(1+x)sqrt(x))