Home
Class 12
MATHS
If I=int e^(-x) log(e^x+1) dx, then equa...

If `I=int e^(-x) log(e^x+1) dx,` then equal

Promotional Banner

Similar Questions

Explore conceptually related problems

e ^(x log a)e^(x)

int (dx)/(e^(x) - 1 ) dx is

int(e^(x)+1)/(e^(x))dx :

If int (e^x-1)/(e^x+1)dx=f(x)+C, then f(x) is equal to

int(e^(x))/(e^(x)+1)dx= ……………

int(e^(x))/(x)(1+xlogx)dx is equal to

int 1/(e^(x)) dx = ………

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

If I=int(e^x)/(e^(4x)+e^(2e)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to