Home
Class 12
MATHS
The maximum value of the function f(x)=s...

The maximum value of the function `f(x)=sin(x+pi/6)+cos(x+pi/6)` in the interval `(0,pi/2)` occurs at `pi/(12)` (b) `pi/6` (c) `pi/4` (d) `pi/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of the function f(x) =tan(x +pi/6)/tanx is:

find the range of function f(x)=sin(x+(pi)/(6))+cos(x-(pi)/(6))

The value of c in Lagranges theorem for the function f(x)=logsinx in the interval [pi/6,(5pi)/6] is (a) pi/4 (b) pi/2 (c) (2pi)/3 (d) none of these

One of the root equation cosx-x+1/2=0 lies in the interval (a) (0,pi/2) (b) (-pi/(2,0)) (c) (pi/2,pi) (d) (pi,(3pi)/2)

The fundamental period of the function f(x)=4cos^4((x-pi)/(4pi^2))-2cos((x-pi)/(2pi^2)) is equal to :

The maximum value of 1+sin((pi)/(6)+theta)+2cos((pi)/(3)-theta) for real values of theta is

The function f(x)=tan^(-1)(sinx+cosx) is an increasing function in (-pi/2,pi/4) (b) (0,pi/2) (-pi/2,pi/2) (d) (pi/4,pi/2)

The smallest positive value of x (in radians) satisfying the equation (log)_(cosx)((sqrt(3))/2sinx)=2-(log)_(secx)(tanx) is (a) pi/(12) (b) pi/6 (c) pi/4 (d) pi/3

The value of c is Rolle's theoram for the function f(x) = cos ((x)/(2)) on [pi, 3pi] is:

Let f(x)=sin[pi/6sin(pi/2sinx)] for all x in RR