Home
Class 12
MATHS
The function f(x)=int(-1)^x t(e^t-1)(t-1...

The function `f(x)=int_(-1)^x t(e^t-1)(t-1)(t-2)^3(t-3)^5dt` has a local minimum at `x=` 0 (b) 1 (c) 2 (d) 3

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Find the points of minima for f(x)=int_0^x t(t-1)(t-2)dt

Let f(x)=int_(2)^(x)f(t^(2)-3t+4)dt . Then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

A function f(x) satisfies f(x)=sinx+int_0^xf^(prime)(t)(2sint-sin^2t)dt is

Consider the unction f(x)=int_(0)^(x)(5ln(1+t^(2))-10t tan^(-1)t+16sint)dt f(x) is

Consider the unction f(x)=int_(0)^(x)(5ln(1+t^(2))-10t tan^(-1)t+16sint)dt Which is not true for int_(0)^(x)f(t)dt gt?

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=

If f(x)=int_(0)^(x)log_(0.5)((2t-8)/(t-2))dt , then the interval in which f(x) is increasing is