Home
Class 12
MATHS
Let inte^x{f(x)-f^(prime)(x)}dx=varphi(x...

Let `inte^x{f(x)-f^(prime)(x)}dx=varphi(x)dot` Then `inte^xf(x)dx` is `varphi(x)=`e^xf(x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

If int f(x)dx=psi(x) , then int x^5f(x^3)dx

int(e^(x))/(e^(x)+1)dx= ……………

int(e^(x)+1)/(e^(x))dx :

If int f (x) dx = g (x) +c, then int f(x)g' (x)dx

If f(a+b-x)=f(x) , then int_(a)^(b)xf(x)dx is equal to

int_(a)^(b) f(x) dx =

Statement 1: int({f(x)varphi^(prime)(x)-f^(prime)(x)varphi(x)})/(f(x)varphi(x)) -logf(x)dx=1/2{(varphi(x))/(f(x))}^2+c Statement 2 : int(h(x))^n h^(prime)(x)dx=((h(x))^(n+1))/(n+1)+c