Home
Class 12
MATHS
The values of parameter a for which the ...

The values of parameter `a` for which the point of minimum of the function `f(x)=1+a^2x-x^3` satisfies the inequality `(x^2+x+2)/(x^2+5x+6)<0a r e` `(2sqrt(3),3sqrt(3))` (b) `-3sqrt(3),-2sqrt(3))` `(-2sqrt(3),3sqrt(3))` (d) `(-2sqrt(2),2sqrt(3))`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the domain of the function f(x)=(x^2-6x+5)/(x^2-5x+6) .

Find the domain of the function f(x)=(x^(2)+3x+5)/(x^(2)-5x+4)

The critical points of the function f(x)=(x-2)^(2/3)(2x+1) are

Find all values of x that satisfies the inequality (2x-3)/((x-2)(x-4))lt0

Find all values of x that satisfies the inequality (2x - 3)/((x - 2) (x - 4)) lt 0.

Find all values of x that satisfies the inequality (2x-3)/((x-2)(x-4)) lt 0

Find the domain of the function f(x) = (x^2 + 3x +5 )/( x^2 -5x+4)

Let f(x)=1-x-x^3 .Values of x not satisfying the inequality, 1-f(x)-f^3(x)>f(1-5x)

Find the values of the parameter a such that the rots alpha,beta of the equation 2x^2+6x+a=0 satisfy the inequality alpha//beta+beta//alpha<2.