Home
Class 12
MATHS
Let g^(prime)(x)>0a n df^(prime)(x)<0AAx...

Let `g^(prime)(x)>0a n df^(prime)(x)<0AAx in Rdot` Then `g(f(x+1))>g(f(x-1))` `f(g(x+1))>f(g(x-1))` `g(f(x+1))

Promotional Banner

Similar Questions

Explore conceptually related problems

Suppose fa n dg are functions having second derivative f'' and g' ' everywhere. If f(x)dotg(x)=1 for all xa n df^(prime)a n dg' are never zero, then (f^('')(x))/(f^(prime)(x))-(g^('')(x))/(g^(prime)(x))e q u a l (a) (-2f^(prime)(x))/f (b) (2g^(prime)(x))/(g(x)) (c) (-f^(prime)(x))/(f(x)) (d) (2f^(prime)(x))/(f(x))

Suppose that f(x) is differentiable invertible function f^(prime)(x)!=0a n dh^(prime)(x)=f(x)dot Given that f(1)=f^(prime)(1)=1,h(1)=0 and g(x) is inverse of f(x) . Let G(x)=x^2g(x)-x h(g(x))AAx in Rdot Which of the following is/are correct? G^(prime)(1)=2 b. G^(prime)(1)=3 c. G^(1)=2 d. G^(1)=3

Let f be a twice differentiable function such that f^(primeprime)=-f(x),a n df^(prime)(x)=g(x),h(x)=[f(x)]^2+[g(x)]^2dot Find h(10)ifh(5)=11

Let g(x) be the inverse of an invertible function f(x) which is differentiable at x=c . Then g^(prime)(f(x)) equal. (a) f^(prime)(c) (b) 1/(f^(prime)(c)) (c) f(c) (d) none of these

Let g(x) be the inverse of an invertible function f(x), which is differentiable for all real xdot Then g^('')(f(x)) equals. (a) -(f^('')(x))/((f^'(x))^3) (b) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^3)/(f^(prime)(x)) (c) (f^(prime)(x)f^('')(x)-(f^(prime)(x))^2)/((f^(prime)(x))^2) (d) none of these

Let f(x) be differentiable for real x such that f^(prime)(x)>0on(-oo,-4), f^(prime)(x) 0on(6,oo), If g(x)=f(10-2x), then the value of g^(prime)(2) is a. 1 b. 2 c. 0 d. 4

f(x)=(1+x) g(x)=(2x-1) Show that fo(g(x))=go(f(x))

If f(x)a n dg(x) are differentiable functions for 0lt=xlt=1 such that f(0)=10 ,g(0)=2,f(1)=2,g(1)=4, then in the interval (0,1)dot (a) f^(prime)(x)=0fora l lx (b) f^(prime)(x)+4g^(prime)(x)=0 for at least one x (c) f(x)=2g'(x) for at most one x (d)none of these

Let F(x)=f(x)g(x)h(x) for all real x ,w h e r ef(x),g(x),a n dh(x) are differentiable functions. At some point x_0,F^(prime)(x_0)=21 F(x_0),f^(prime)(x_0)=4f(x_0),g^(prime)(x_0)=-7g(x_0), and h^(prime)(x_0)=kh(x_0) . Then k is________

If f(x),g(x)a n dh(x) are three polynomials of degree 2, then prove that varphi(x)=|f(x)g(x)h(x)f^(prime)(x)g^(prime)(x)h^(prime)(x)f^(x)g^(x)h^(x)|i sacon s t a n tpol y nom i a l