Home
Class 12
MATHS
If f(x)=x^3+4x^2+lambdax+1 is a monotoni...

If `f(x)=x^3+4x^2+lambdax+1` is a monotonically decreasing function of `x` in the largest possible interval `(-2,-2/3)dot` Then (a ) `lambda=4` (b) `lambda=2` (c) `lambda=-1` (d) `lambda` has no real value

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= lambdae^(-lambdax),xgt0 is aprobability density function of X then its variance is :

If y=2 is the directrix and (0,1) is the vertex of the parabola x^2+lambday+mu=0 , then (a) lambda=4 (b) mu=8 (c) lambda=-8 (d) mu=4

If f(x)=2/(sqrt(3))tan^(-1)((2x+1)/(sqrt(3)))-log(x^2+x+1)(lambda^2-5lambda+3)x+10 is a decreasing function for all x in R , find the permissible values of lambdadot

If in any triangle, the area DeltaABC le(b^(2)+c^(2))/(lambda) , then the largest possible numerical value of lambda is

f(x)=4tanx-tan^2x+tan^3x ,x!=npi+pi/2, (a)is monotonically increasing (b)is monotonically decreasing (c)has a point of maxima (d)has a point of minima

Find the largest possible domain for the real valued function f defined by f(x)=sqrt(x^(2)-4x+3) .

Find the locus of image of the veriable point (lambda^(2), 2 lambda) in the line mirror x-y+1=0, where lambda is a perimeter.

If (1,2,4) and (2,-3 lambda,-3 ) are the initial and terminal points of the vector hati+5hatj-7hatk , then value of lambda is equal to

The circle x^2+y^2+2lambdax=0,lambda in R , touches the parabola y^2=4x externally. Then, (a) lambda>0 (b) lambda 1 (d) none of these

If f(x)=lambda|sinx|+lambda^2|cosx|+g(lambda) has a period = pi/2 then find the value of lambda