Home
Class 12
MATHS
A function g(x) is defined as g(x)=1/4f...

A function `g(x)` is defined as `g(x)=1/4f(2x^2-1)+1/2f(1-x^2)a n df(x)` is an increasing function. Then `g(x)` is increasing in the interval. `(-1,1)` `(-sqrt(2/3),0)uu(sqrt(2/3),oo)` `(-sqrt(2/3),sqrt(2/3))` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=3sqrt(1−x^2)​+3sqrt(1−x^2)​, then f(x) is

Show that f(x) = 2x + cot^-1 x + log(sqrt(1+x^2)-x) is increasing in R

The value of ("lim")_(xto2)(sqrt(1+sqrt(2+x))-sqrt(3))/(x-2)i s (a) 1/(8sqrt(3)) (b) 1/(4sqrt(3)) (c) 0 (d) none of these

int(x^4-1)/(x^2sqrt(x^4+x^2+1))dx= sqrt(x^2+1/(x^2)+1)+C (sqrt(x^4+x^2+1))/(x^2)+C (sqrt(x^4+x^2+1))/x+C (d) none of these

Suppose that g(x)=1+sqrt(x) and f(g(x))=3+2sqrt(x)+xdot Then find the function f(x)dot

Suppose that g(x)=1+sqrt(x) " and " f(g(x))=3+2sqrt(x)+x. Then find the function f(x) .

Let g(x)=2f(x/2)+f(2-x)a n df^('')(x)<0AAx in (0,2)dot Then g(x) increases in (a) (1/2,2) (b) (4/3,2) (c) (0,2) (d) (0,4/3)

The function y=f(x) is the solution of the differential equation (dy)/(dx)+(x y)/(x^2-1)=(x^4+2x)/(sqrt(1-x^2)) in (-1,1) satisfying f(0)=0. Then int_((sqrt(3))/2)^((sqrt(3))/2)f(x)dx is

The domain of f(x)=sin^(-1)[2x^2-3],w h e r e[dot] denotes the greatest integer function, is (a) (-sqrt(3/2),sqrt(3/2)) (b) (-sqrt(3/2),-1)uu(-sqrt(5/2),sqrt(5/2)) (c) (-sqrt(5/2),sqrt(5/2)) (d) (-sqrt(5/2),-1)uu(1,sqrt(5/2))

If tan^(-1)x+2cot^(-1)x=(2pi)/3, then x , is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3) (d) sqrt(2)