Home
Class 12
MATHS
The greatest value of f(x)=cos(x e^([x])...

The greatest value of `f(x)=cos(x e^([x])+7x^2-3x),x in [-1,oo],` is (where [.] represents the greatest integer function). `-1` (b) 1 (c) 0 (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve tan x=[x], x in (0, 3pi//2) . Here [.] represents the greatest integer function.

Find the domain of f(x)=sqrt(([x]-1))+sqrt((4-[x])) (where [ ] represents the greatest integer function).

Draw the graph of y = [cos x], x in [0, 2pi], where [*] represents the greatest integer function.

Draw the graph of f(x) = [log_(e)x], e^(-2) lt x lt 10 , where [*] represents the greatest integer function.

The value of lim_(x->0)([(100 x)/(sinx)]+[(99sinx)/x]) (where [.] represents the greatest integral function) is (a) 199 (b) 198 (c) 0 (d) none of these

lim_(x->0)[(1-e^x)(sinx)/(|x|)]i s(w h e r e[dot] represents the greatest integer function). (a) -1 (b) 1 (c) 0 (d) does not exist

Prove that [lim_(xto0) (tan^(-1)x)/(x)]=0, where [.] represents the greatest integer function.

Draw the graph of f(x)=[tan^(-1)x]," where "[*]" represents the greatest integer function".

Draw a graph of f(x) = sin {x} , where {x} represents the greatest integer function.