Home
Class 12
MATHS
Evaluate int f(x) is polynomaial functi...

Evaluate `int f(x)` is polynomaial function of then the degree, prove that `int e^x f(x) dx=e^x[f(x) f'(x)+f^x=f^x+......+(-1)^n f^n (x)]` where `f^n(x) dx+(d^nf)/(dx^n)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x) be a differentiable function such that f(x)=x^2 +int_0^x e^-t f(x-t) dt then int_0^1 f(x) dx=

If f(x+f(y))=f(x)+yAAx ,y in Ra n df(0)=1, then prove that int_0^2f(2-x)dx=2int_0^1f(x)dxdot

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

Evaluate int[f(x)g^(n)(x)-f^(n)(x)g(x)]dx

If int f' (x) e^(x^(2)) dx = (x-1)e^(x^(2)) + c , then f (x) is

Evaluate: inte^x(f(x)+f^(prime)(x))dx=e^xf(x)+C

If f(x)=f(a+x) then show that int_(0)^(2a)f(x)dx=2int_(0)^(a)f(x)dx .

If f(x) is an odd function then int_(-a)^(a)f(x)dx is …………. .