Home
Class 12
MATHS
Solve e^((dy)/(dx))=x+1, given that when...

Solve `e^((dy)/(dx))=x+1,` given that when `x=0,y=3.`

Text Solution

Verified by Experts

`e^((dy)/(dx))=x+1`
or `(dy)(dx) = log(x+1)`
or `intdy=intlog(x+1)dx`
or `y=(x+1)log(x+1)-x+c`
when x=0, y=3 is c=3
Hence, the solution is `y=(x+1)log(x+1)-x+3`
Promotional Banner

Similar Questions

Explore conceptually related problems

Solve x^2((dy)/(dx))+y=1

Solve: x(dy)/(dx)=x+y

Solve log(dy/dx)=4x-2y-2 , given that y=1 when x=1.

Solve (dy)/(dx)+2y=e^(-x)

Solve: (dy)/(dx)+y=e^(-x)

Find the particular solution of the differential equations log ((dy)/(dx)) = 3x + 4y given that y = 0 when x = 0.

Solve ((dy)/(dx))+(y/x)=y^3

Find a particular solution of the differential equation (x+1)(dy)/(dx)=2e^(-y)-1, given that y=0 when x=0.