Home
Class 12
MATHS
Find the underset(0leiltjlen)(sumsum1)....

Find the `underset(0leiltjlen)(sumsum1)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find the sumsum_(0leiltjlen)1 .

Let S_(1)=underset(0 le i lt j le 100)(sumsum)C_(i)C_(j) , S_(2)=underset(0 le j lt i le 100)(sumsum)C_(i)C_(j) and S_(3)=underset(0 le i = j le 100)(sumsum)C_(i)C_(j) where C_(r ) represents cofficient of x^(r ) in the binomial expansion of (1+x)^(100) If S_(1)+S_(2)+S_(3)=a^(b) where a , b in N , then the least value of (a+b) is

Find the value of underset((inejnek))(sum_(i=0)^(oo)sum_(j=0)^(oo)sum_(k=0)^(oo))1/(3^(i)3^(j)3^(k)) .

Find the sum sumsum_(0leiltjlen)"^nC_i

Find the sum sumsum_(0leiltjlen) "^nC_i "^nC_j

Find the value underset(n rarr oo)("lim") underset(k =2)overset(n)sum cos^(-1) ((1 + sqrt((k -1) k(k + 1) (k + 2)))/(k(k + 1)))

If a_(n) = sum_(r=0)^(n) (1)/(""^(n)C_(r)) , then the value of (sumsum)_(0leiltjlen) (i/(""^(n)C_(i))+j/(""^(n)C_(j)))

Find the value of sumsum_(1leilejlt=n-1)(ij)^n c_i^n"" c_jdot

Find the sum underset(r=1)r(r+1)(r+2)(r+3) .

Find the value of sumsum_(0lt=i