Home
Class 12
MATHS
A function f is continuous for all x (an...

A function `f` is continuous for all `x` (and not everywhere zero) such that `f^2(x)=int_0^xf(t)(cost)/(2+sint)dtdot` Then `f(x)` is `1/2 1n((x+cosx)/2); x!=0` `1/2 1n(3/(x+cosx)); x!=0` `1/2 1n((2+sinx)/2); x!=npi,n in I` `(cosx+sinx)/(2+sinx); x!=npi+(3pi)/4,n in I`

Promotional Banner

Similar Questions

Explore conceptually related problems

(cosx)/((1-sinx)(2-sinx)) [Hint : Put sin x = t]

A function f(x) satisfies f(x)=sinx+int_0^xf^(prime)(t)(2sint-sin^2t)dt is

Let f(x) be a continuous and differentiable function such that f(x)=int_0^xsin(t^2-t+x)dt Then prove that f^('')(x)+f(x)=cosx^2+2xsinx^2

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

Find the range of f(x)=1/((cosx-3)^2+(sinx+4)^2)

Let f: RvecR be a continuous function which satisfies f(x)= int_0^xf(t)dtdot Then the value of f(1n5) is______

If f is an odd function, then evaluate I=int_(-a)^a(f(sinx)/(f(cosx)+f(sin^2x)dx

Discuss the extremum of f(x)=sinx(1+cosx),x in (0,pi/2)

prove that 1-1/2(sin2x)=(sin^3 x +cos^3 x)/(sinx +cosx)