Home
Class 12
MATHS
If I(n)=int(0)^(pi/2) sin^(x)x dx, then ...

If `I_(n)=int_(0)^(pi/2) sin^(x)x dx`, then show that `I_(n)=((n-1)n)I_(n-2)`.
Hence prove that
`I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}`

Promotional Banner

Similar Questions

Explore conceptually related problems

If n is odd then int_(0)^(pi//2)sin^(n)x dx is

IfI_(m , n)=int_0^(pi/2)sin^m xcos^n xdx , Then show that I_(m , n)=(m-1)/(m+n)I_m-2n(m ,n in N) Hence, prove that I_(m , n)=f(x)={((n-1)(n-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))pi/4 when both m and n are even ((m-1)(m-3)(m-5)(n-1)(n-3)(n-5))/((m+n)(m+n-2)(m+n-4))

If I_n=int_0^1(dx)/((1+x^2)^n); n in N , then prove that 2nI_(n+1)=2^(-n)+(2n-1)I_n

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

Let I_(n)=int_(0)^(pi//2)(sinx+cosx)^(n)dx(nge2) . Then the value of n. I_(n)-2(n-1)I_(n-1) is

IfI_n=int_0^1x^n(tan^(-1)x)dx ,t h e np rov et h a t (n+1)I_n+(n-1)I_(n-2)=-1/n+pi/2

Let I_(n)=int_(0)^(1)x^(n)sqrt(1-x^(2))dx. Then lim_(nrarroo)(I_(n))/(I_(n-2))=

lim_(n->oo)((n^2-n+1)/(n^2-n-1))^(n(n-1)) is

lim_(n to oo)((1)/(n^2)+(2)/(n^2)+(3)/(n^2)+"………."+(n)/(n^2)) is