Home
Class 12
MATHS
Evaluate: int0^pi(xsin2xsin(pi/2cosx))/(...

Evaluate: `int_0^pi(xsin2xsin(pi/2cosx))/(2x-pi)dx`

Text Solution

Verified by Experts

Let `I=int_(0)^(pi) (x sin 2x "sin"((pi)/2cos x))/(2x-pi) dx`…………..1
Then `I=int_(0)^(pi)((pi-x)sin(2pi-2x)sin((pi))/2cos(pi-x))/(2(pi-x)-pi)dx`
`=int_(0)^(pi)((pi-x)(-sin2x)"sin"(-(pi)/2 cosx))/(pi-2x)dx`,
or `I=int_(0)^(pi)((x-pi)sin2x"sin"((pi)/2cosx))/(2x-pi) dx`................2
Adding 1 and 2 we get
`2I=int_(0)^(pi)((2x-pi)sinxsin((pi)/2cosx)/(2x-pi)dx`
`=int_(0)^(pi)sin 2x"sin"(pi)/2 cosx)dx`
`=int_(0)^(pi) 2 sinx cos x sin ((pi)/2 cosx)dx`
or `I=int_(0)^(pi) sin x cos x "sin"((pi)/2cosx)dx`
PUt `z=(pi)/2 cosx`. Then `dz=-(pi)/2 sin x dx`.
When `x=0, z=(pi)/2` and when `x=pi,z=-(pi)/2`
`:. I=-2/(pi) int_(pi//2)^(-pi//2) (2z)/(pi) sin z dz =4/(pi^(2)) int_(-pi//2)^(pi//2) z sin z dz =8/(pi^(2))`
Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : int_0^pi(x^2sin2x*sin(pi/2*cosx))/(2x-pi)dx

Evaluate : int_0^(pi/2) (sinx+cosx) dx

Evaluate int_(0)^(pi)xsin^(3)xdx

Evaluate int_(0)^(pi/2)(sinx/(cosx+sinx))dx

Evaluate int_(0)^(pi)(xsinx)/(1+cos^(2)x)dx

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

Prove that: int_0^(2pi)(xsin^(2n)x)/(sin^(2n)+cos^(2n)x)dx = pi^2

Evaluate: int_0^(pi/2)|sinx-cosx|dx

Evaluate: int_(-pi//2)^(pi//2)(cosx)/(1+e^x)dx