Home
Class 12
MATHS
If int0^x {int0^u f(t) dx}du is equal t...

If `int_0^x {int_0^u f(t) dx}du` is equal to (a) `int_0^x (x-u) f(u)` (b) `int_0^xuf(x-u)du` (c) `x int_0^x f(u) du` (d) `x int_0^x uf(u-x)du`

A

`int_(0)^(x)(x-u)f(u)du`

B

`int_(0)^(x) uf(x-u)du`

C

`x int_(0)^(x)f(u)du`

D

`x int_(0)^(x)uf(u-x)du`

Text Solution

Verified by Experts

L.H.S `=int_(0)^(x) {int_(0)^(u)f(t)dt}du`
Integrating by parts choose 1 as the second function. Then,
L.H.S`={uint_(0)^(u)f(t)dt}_(0)^(x)-int_(0)^(x)f(u)u du`
`=x int_(0)^(x)f(t)dt-int_(0)^(x)f(u)u du`
`=x int_(0)^(x)f(u)du-int_(0)^(x)f(u) udu-int_(0)^(x)f(u)(x-u)du`
`=R.H.S`.
Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x) is continuous for all real values of x , then sum_(r=1)^nint_0^1f(r-1+x)dx is equal to (a) int_0^nf(x)dx (b) int_0^1f(x)dx (c) int_0^1f(x)dx (d) (n-1)int_0^1f(x)dx

If int_(0)^(a) f(x) dx + int_(0)^(a) f(2a-x) dx =

If int_(0)^(2a) f (x) dx = 2 int_(0)^(a) f(x) then

int_0^1(tan^(-1)x)/x dx is equals to int_0^(pi/2)(sinx)/x dx (b) int_0^(pi/2)x/(sinx)dx 1/2int_0^(pi/2)(sinx)/x dx (d) 1/2int_0^(pi/2)(""x)/(sinx)dx

Iff(2-x)=f(2+x)a n df(4-x)=f(4+x) for all xa n df(x) is a function for which int_0^2f(x)dx=5,t h e nint_0^(50)f(x)dx is equal to 125 (b) int_(-4)^(46)f(x)dx int_1^(51)f(x)dx (d) int_2^(52)f(x)dx

Let f(x)=7tan^8x+7tan^6x-3tan^4x-3tan^2x for all x in (-pi/2,pi/2) . Then the correct expression (s) is (are) (a) int_0^(pi/4)xf(x)dx=1/(12) (b) int_0^(pi/4)f(x)dx=0 (c) int_0^(pi/4)xf(x)=1/6 (d) int_0^(pi/4)f(x)dx=1/(12)