Home
Class 12
MATHS
Evaluate: int0^(10pi)[tan^(-1)x]dx ,w h ...

Evaluate: `int_0^(10pi)[tan^(-1)x]dx ,w h e r e[x]` represents greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate: int_0^oo[2e^(-x)]dx ,w h e r e[x] represents greatest integer function.

Evaluate: int_0^(2pi)[sinx]dx ,w h e r e[x] denotes the greatest integer function.

Evaluate: int_0^(100)x-[x]dx where [dot] represents the greatest integer function).

Evaluate: int_0^((5pi)/(12))[tanx]dx , where [dot] denotes the greatest integer function.

Prove that int_0^oo[cot^(-1)x]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate: int_1^(e^6)[(logx)/3]dx ,w h e r e[dot] denotes the greatest integer function.

Evaluate : [lim_(x to 0) (tan x)/(x)] , where [*] represents the greatest integer function.

The value of int_0^(2pi)[2 sin x] dx , where [.] represents the greatest integral functions, is

Evaluate: int_0^2[x^2-x+1]dx ,w h e r e[dot] denotos the greatest integer function.

Find x satisfying [tan^(-1)x]+[cot^(-1)x]=2, where [.] represents the greatest integer function.