Home
Class 12
MATHS
The Integral int(pi/4)^((3pi)/4)(dx)/(1+...

The Integral `int_(pi/4)^((3pi)/4)(dx)/(1+cosx)` is equal to:

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement I: The value of the integral int_(pi//6)^(pi//3) (dx)/(1+sqrt(tanx)) is equal to (pi)/6 . Statement II: int_(a)^(b)f(x)dx=int_(a)^(b)f(a+b-x)dx

int_((pi)/4)^((pi)/2)(2cosecx)^17 dx

G i v e nint_0^(pi/2)(dx)/(1+sinx+cosx)=log2. Then the value of integral int_0^(pi/2)(sinx)/(1+sinx+cosx)dx is equal to (a) 1/2log2 (b) pi/2-log2 (c) pi/4-1/2log2 (d) pi/2+log2

Evaluate: int_(pi//6)^(pi//3)(dx)/(1+sqrtcotx)

The integral int_(pi//6)^(pi//4)(dx)/(sin2x(tan^(5)x+cot^(5)x)) equals

int_(-(pi)/(2))^((pi)/(2))(sin^3xdx)/(1+cosx)= .

The value of int_(0)^(pi) (dx)/(1+5^(cosx)) is :

The value of int_(pi//4)^(3pi//4)(x)/(1+sinx) dx .. . . . .

"the integral "int(dx)/(x^2(x^4+1)^(3/4))

Evaluate: int_(pi//4)^(pi//4)log(sinx+cosx)dx