Home
Class 12
MATHS
The value of the integral int(e^(-1))^(e...

The value of the integral `int_(e^(-1))^(e^2)|((log)_e x)/x| dx` is (A) `3/2` (B) `5/2` (C) 3 (D) 5

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the definite integral int_(0)^(1)(1+e^(-x^(2))) dx is

Evaluate the definite integral int_(1)^(2)e^(x)dx

Evaluate the definite integrals int_(4)^(5)e^(x)dx

The integral int_(1)^(e){(x/e)^(2x)-(e/x)^x}log_exdx is equal to

The value of the integral int_(-(3pi)/4)^((5pi)/4)((sinx+cosx)/(e^(x-pi/4)+1))dx (A) 0 (B) 1 (C) 2 (D) none of these

int_(0)^(1)e^(2x)e^(e^(x) dx =)

The value of int_(0)^(oo) e^(-3x) x^(2) dx is

Evaluate the following integrals. int(3x^(2)+2e^(x))dx

Find the following integrals int(4e^(5x)+e^(3x)+1)dx