Home
Class 12
MATHS
Area bounded by the curve x y^2=a^2(a-x)...

Area bounded by the curve `x y^2=a^2(a-x)` and the y-axis is `(pia^2)/2s qdotu n i t s` (b) `pia^2s qdotu n i t s` (c) `3pia^2s qdotu n i t s` (d) None of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The area bounded by the curves y=x e^x ,y=x e^(-x) and the line x=1 is 2/e s qdotu n i t s (b) 1-2/e s qdotu n i t s 1/e s qdotu n i t s (d) 1-1/e s qdotu n i t s

If the extremities of the base of an isosceles triangle are the points (2a ,0) and (0, a), and the equation of one of the side is x=2a , then the area of the triangle is (a) 5a^2s qdotu n i t s (b) (5a^2)/2s qdotu n i t s (c) (25 a^2)/2s qdotu n i t s (d) none of these

The area of the triangle formed by the positive x- axis and the normal and tangent to the circle x^2+y^2=4 at (1,sqrt(3)) is (a) 2sqrt(3)s qdotu n i t s (b) 3sqrt(2)s qdotu n i t s (c) sqrt(6)s qdotu n i t s (d) none of these

The area bounded by the two branches of curve (y-x)^2=x^3 and the straight line x=1 is 1/5s qdotu n i t s (b) 3/5s qdotu n i t s 4/5s qdotu n i t s (d) 8/4s qdotu n i t s

The area bounded by the curves y=(log)_e xa n dy=((log)_e x)^2 is e-2s qdotu n i t s (b) 3-es qdotu n i t s es qdotu n i t s (d) e-1s qdotu n i t s

The straight lines 7x-2y+10=0 and 7x+2y-10=0 form an isosceles triangle with the line y=2. The area of this triangle is equal to (a) (15)/7s qdotu n i t s (b) (10)/7s qdotu n i t s (c) (18)/7s qdotu n i t s (d) none of these

The area of the region whose boundaries are defined by the curves y=2cosx , y=3tanx ,a n dt h ey-a xi si s 1+31n(2/(sqrt(3)))s qdotu n i t s 1+3/2 1n3-31n2s qdotu n i t s 1+3/2 1n3-1n2s qdotu n i t s 1n3-1n2s qdotu n i t s

Consider two curves C_1: y^2=4[sqrt(y)]x a n dC_2: x^2=4[sqrt(x)]y , where [.] denotes the greatest integer function. Then the area of region enclosed by these two curves within the square formed by the lines x=1,y=1,x=4,y=4 is 8/3s qdotu n i t s (b) (10)/3s qdotu n i t s (11)/3s qdotu n i t s (d) (11)/4s qdotu n i t s

The minimum area of the triangle formed by the tangent to (x^2)/(a^2)+(y^2)/(b^2)=1 and the coordinate axes is (a) a b sq. units (b) (a^2+b^2)/2s qdot""u n i t s (c) ((a+b)^2)/2s qdot""u n i t s (d) (a^2+a b+b^2)/3 sq. units

A straight line passing through P(3,1) meets the coordinate axes at Aa n dB . It is given that the distance of this straight line from the origin O is maximum. The area of triangle O A B is equal to (50)/3s qdotu n i t s (b) (25)/3s qdotu n i t s (20)/3s qdotu n i t s (d) (100)/3s qdotu n i t s