Home
Class 12
MATHS
The value of int(1/e)^(tanx)(tdt)/(1+t^2...

The value of `int_(1/e)^(tanx)(tdt)/(1+t^2)+int_(1/e)^(cotx)(dt)/(t(1+t^2)),` where `x in (pi/6,pi/3)` , is equal to: (a)0 (b) 2 (c) 1 (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)=int_0^1(dt)/(1+|x-t|) ,then f^(prime)(1/2) is equal to (a)0 (b) 1/2 (c) 1 (d) none of these

The value of (int_(0)^(1)(dt)/(sqrt(1-t^(4))))/(int_(0)^(1)(1)/(sqrt(1+t^(4)))dt) is

If f(x)=int_(2)^(x)(dt)/(1+t^(4)) , then

Let f(x)=int_(1)^(x)(3^(t))/(1+t^(2))dt , where xgt0 , Then

If int_(0)^(x)f(t)dt=e^(x)-ae^(2x)int_(0)^(1)f(t)e^(-t)dt , then

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

If y=tan^(-1)((2^x)/(1+2^(2x+1))),t h e n(dy)/(dx)a tx=0 is (a)1 (b) 2 (c) 1n 2 (d) none of these

int_(-pi/2)^(pi/2)(e^(|sinx|)cosx)/(1+e^(tanx))dx is equal to (a) e+1 (b) 1-e (c) e-1 (d) none of these

int_0^oo(x dx)/((1+x)(1+x^2)) is equal to (A) pi/4 (B) pi/2 (C) pi (D) none of these"

Evaluate int_(-oo)^(0)(te^(t))/(sqrt(1-e^(2t)))dt