Home
Class 12
MATHS
Prove that: y=int(1/8)^(sin^2x)sin^(-1)...

Prove that: `y=int_(1/8)^(sin^2x)sin^(-1)sqrt(t)dt+int_(1/8)^(cos^2x)cos^(-1)sqrt(t)`,where `0lt=xlt=pi/2`, is the equation of a straight line parallel to the x-axis. Find the equation.

Promotional Banner

Similar Questions

Explore conceptually related problems

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

int(2sin^(-1)x)/(sqrt(1-x^(2)))dx

Prove that int_(0)^(pi/4)(sin2xdx)/(sin^(4)x+cos^4 x)=(pi)/(4)

Evaluate int_(0)^(1) (sin^(-1)x)/(sqrt(1-x^(2)))dx .

Prove that int_(0)^(pi)(xsin^(3)x)/(1+cos^(2)x)dx=pi/2(pi-2)

If f(x)=int_(0)^(x)|t-1|dt , where 0lexle2 , then

Solve the equation sqrt(|sin^(-1)|"cosx"||+|cos^(-1)|sinx||)=sin^(-1)|cosx|-cos^(-1)|sinx|,(-pi)/2lt=xlt=pi/2dot

Evaluate: int(2x-sqrt(sin^(-1)x))/(sqrt(1-x^2))dxdot

Evaluate: int_(0)^(pi/4)(dx)/(a^(2)sin^(2)x+b^(2)cos^(2)x)=(1)/(ab)tan^(-1)(a/b) , where a,b>0