Home
Class 12
MATHS
f(x)>0AAx in Ra n di sbou n d e ddotIf ...

`f(x)>0AAx in Ra n di sbou n d e ddotIf` `(lim)_(nvecoo)[int_0^a(f(x)dx)/(f(x)+f(a-x))+a^2+aint_a^(2a)(f(x)dx)/(f(x)+f(3a-x))+int_(2a)^(3a) (f(x)dx)/(f(x)+f(5a-x))++a^(n-1)int_((n-1)a)^(n a)(f(x)dx)/(f(x)+f[2n-1)a-x])]=7//5` (where `a<1),` then `a` is equal to `2/7` (b) `1/7` (c) `(14)/(19)` (d) `9/(14)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(a)(f(x))/(f(x)+f(a-x)) dx.

If f(x) is even then int_(-a)^(a)f(x)dx ….

If f(x)=f(a+x) then show that int_(0)^(2a)f(x)dx=2int_(0)^(a)f(x)dx .

If int_(0)^(a) f(x) dx + int_(0)^(a) f(2a-x) dx =

If int_(0)^(2a) f (x) dx = 2 int_(0)^(a) f(x) then

int_(0)^(2a) f(x) dx = 0 if ……… .

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx