Home
Class 12
MATHS
Given a matrix A=[(a,b,c),(b,c,a),(c,a,b...

Given a matrix `A=[(a,b,c),(b,c,a),(c,a,b)]`, where a, b, c are real positive numbers. If `abc=1` and `A^(T)A=I`, then find the value of `a^(3)+b^(2)+c^(3)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

Given a matrix A=[a b c b c a c a b],w h e r ea ,b ,c are real positive numbers a b c=1a n dA^T A=I , then find the value of a^3+b^3+c^3dot

If a,b,c are positive real numbers and 2a+b+3c=1 , then the maximum value of a^(4)b^(2)c^(2) is equal to

If a, b,c are three positive real numbers , then find minimum value of (a^(2)+1)/(b+c)+(b^(2)+1)/(c+a)+(c^(2)+1)/(a+b)

In a triangle ABC if b+c=3a then find the value of cot(B/2)cot(C/2)

If (log)_b a(log)_c a+(log)_a b(log)_c b+(log)_a c(log)_bc=3 (where a , b , c are different positive real numbers !=1), then find the value of a b c dot

If a ne b, b,c satisfy |(a,2b,2c),(3,b,c),(4,a,b)|=0 , then abc =

If a , b ,c are three distinct positive real numbers in G.P., then prove that c^2+2a b >3a cdot

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

If a ,b ,c are three distinct real numbers in G.P. and a+b+c=x b , then prove that either x >3.