Home
Class 12
MATHS
f(x) is continuous function for all real...

`f(x)` is continuous function for all real values of `x` and satisfies `int_0^xf(t)dt=int_x^1t^2f(t)dt+(x^(16))/8+(x^6)/3+adot` Then the value of `a` is equal to: `-1/(24)` (b) `(17)/(168)` (c) `1/7` (d) `-(167)/(840)`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

If int_0^x(f(t))dt=x+int_x^1(t^2.f(t))dt+pi/4-1 , then the value of the integral int_-1^1(f(x))dx is equal to

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

Let f be a continuous function satisfying the equation int_(0)^(x)f(t)dt+int_(0)^(x)tf(x-t)dt=e^(-x)-1 , then find the value of e^(9)f(9) is equal to…………………..

If int_(0)^(x^(2)(1+x))f(t)dt=x , then the value of f(2) is.

Let f:R -(0,oo) be a real valued function satisfying int_0^x tf(x-t) dt =e^(2x)-1 then f(x) is

If f' is a differentiable function satisfying f(x)=int_(0)^(x)sqrt(1-f^(2)(t))dt+1/2 then the value of f(pi) is equal to