Home
Class 12
MATHS
Prove that int0^x[t]dt=([x]([x]-1))/2+[...

Prove that `int_0^x[t]dt=([x]([x]-1))/2+[x](x-[x]),` where [.] denotes the greatest integer function.

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve x^2-4-[x]=0 (where [] denotes the greatest integer function).

Evaluate int_(-1)^(1) (x-[x])dx , where [.] denotes the greatest integer function.

Evaluate int_(-1)^(3)(x-[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(-1)^(3) [x]dx ,where [.] denotes the greatest integer function.

Evaluate int_(-1)^(1)(x+[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(-1)^(3)(x+[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(2)^(5) (x-[x])dx , where [.] denotes the greatest integer function.

Evaluate int_(2)^(5)(x+[x])dx ,where [.] denotes the greatest integer function.

Evaluate int_(0)^(3) [x]dx ,where [.] denotes the greatest integer function.

Evaluate int_(-1)^(1)[x+[x+[x]]]dx , where [.] denotes the greatest integer function