Home
Class 12
MATHS
For x in R and a continuous function f,...

For `x in R` and a continuous function `f,` let `I_1=int_(s in^2t)^(1+cos^2t)xf{x(2-x)}dxa n dI_2= int_(sin^2t)^(1+cos^2)xf{x(2-x)}dxdotT h e n(I_1)/(I_2)` is `-1` (b) 1 (c) 2 (d) 3

Promotional Banner

Similar Questions

Explore conceptually related problems

IfI_n=int_0^pie^x(sin"x")^("n")dx ,t h e n(I_3)/(I_1)"is equal to" 3/5 (b) 1/5 (c) 1 (d) 2/5

A continuous function f(x) satisfies the relation f(x)=e^x+int_0^1 e^xf(t)dt then f(1)=

Q. int_0^pi(e^(cos^2x)( cos^3(2n+1) x dx, n in I

If f^(prime)(x)=sqrt(2x^2-1)a n dy=f(x^2),t h e n(dy)/(dx)a tx=1 is 2 (b) 1 (c) -2 (d) none of these

If f(x) =(e^x)/(1+e^x), I_1=int(f(-a))^(f(a)) xg(x(1-x)dx, and I_2=int_(f(-a))^(f(a)) g(x(1-x))dx, then the value of (I_2)/(I_1) is (a) -1 (b) -2 (c) 2 (d) 1

If f(x) is an integrable function for x in [pi/6,pi/3]a n d I_1=int_(pi/6)^(pi/3)sec^2thetaf(2sin2theta)dtheta,a n d I_2=int_(pi/6)^(pi/3)"c o s e c"^2thetaf(2sin2theta)dtheta,t h e n(I_1)/(I_2)=

Let f be a positive function. Let I_1=int_(1-k)^k xf([x(1-x)])dx , I_2=int_(1-k)^kf[x(1-x)]dx ,w h e r e2k-1> 0. T h e n(I_1)/(I_2)i s 2 (b) k (c) 1/2 (d) 1

"I f"I_1=int_(-100)^(101)(dx)/((5+2x-2x^2)(1+e^(2-4x))) "and"I_2=int_(-100)^(101)(dx)/(5+2x-2x^2),t h e n(I_1)/(I_2)"i s" (a)2 (b) 1/2 (c) 1 (d) -1/2

If int_(0)^(x) f(t)dt=x^2+int_(x)^(1) t^2f(t)dt , then f'(1/2) is