Home
Class 12
MATHS
Consider the integral int0^(2pi)(dx)/(5-...

Consider the integral `int_0^(2pi)(dx)/(5-2cosx)` making the substitution `tan(x/2)=t ,` we have `I=int_0^(2pi)(dx)/(5-2cosx)` `=int_0^0(2dt)/((1+t^2)[5-2(1-t^2)/(1+t^2)])=0` The result is obviously wrong, since the integrand is positive and consequently the integral of this function cannot be equal to zero. Find the mistake.

Promotional Banner

Similar Questions

Explore conceptually related problems

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

Evaluate: int_0^(4pi)(dx)/(cos^2x(2+tan^2x)

Evaluate: int_0^(pi/2)xcotx dx

Evaluate: int_0^(pi/2)|sinx-cosx|dx

Evaluate : int_0^(pi/2) (sinx+cosx) dx

Evaluate int_(0)^(pi/2)sinx/(cosx+sinx)dx .

Evaluate int_(0)^(pi/2)(sinx/(cosx+sinx))dx

Evaluate the definite integrals int_(0)^(1)(2x+3)/(5x^(2)+1)dx