Home
Class 12
MATHS
If int0^1(e^(-x)dx)/(1+e^x)=(log)e(1+e)+...

If `int_0^1(e^(-x)dx)/(1+e^x)=(log)_e(1+e)+k` , then find the value of k.

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate int_(0)^(1)(e^(-x)dx)/(1+e^(x))

int(e^(x)+1)/(e^(x))dx :

If I_K=int_1^e(lnx)^kdx(k in I^+)dx(k in I^+), then find the value of I_4dot

int_(0)^(1)e^(2x)e^(e^(x) dx =)

If int_0^1(e^t)/(1+t)dt=a , then find the value of int_0^1(e^t)/((1+t)^2)dt in terms of a .

If int_0^1e^-(x^2)dx=a , then find the value of int_0^1x^2e^-(x^2)dx in terms of a .

"If "log_(e)(log_(e) x-log_(e)y)=e^(x^(2_(y)))(1-log_(e)x)," then find the value of "y'(e).

int(e^(x))/(e^(x)+1)dx= ……………

int 1/(e^(x)) dx = ………

Evaluate int_0^1(e^x)/(1+e^(2x)) dx