Home
Class 12
MATHS
If f(x) is continuous for all real valu...

If `f(x)` is continuous for all real values of `x ,` then `sum_(r=1)^nint_0^1f(r-1+x)dx `is equal to (a)`int_0^nf(x)dx` (b) `int_0^1f(x)dx` (c)`int_0^1f(x)dx` (d) `(n-1)int_0^1f(x)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

Q. if int_0^100(f(x) dx = a , then sum_(r=1)^100(int_0^1( f(r-1+x)dx)) =

int_0^1(tan^(-1)x)/x dx is equals to int_0^(pi/2)(sinx)/x dx (b) int_0^(pi/2)x/(sinx)dx 1/2int_0^(pi/2)(sinx)/x dx (d) 1/2int_0^(pi/2)(""x)/(sinx)dx

Prove that int_(a)^(b)f(x)dx=(b-a)int_(0)^(1)f((b-a)x+a)dx

The value of the integral int_0^(2a)[(f(x))/({f(x)+f(2a-x)})]dx "is equal to "a

If int_(0)^(a) f(x) dx + int_(0)^(a) f(2a-x) dx =

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

f(x) is a continuous function for all real values of x and satisfies int_n^(n+1)f(x)dx=(n^2)/2AAn in Idot Then int_(-3)^5f(|x|)dx is equal to (19)/2 (b) (35)/2 (c) (17)/2 (d) none of these

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx