Home
Class 12
MATHS
IfI1=int0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I...

`IfI_1=int_0^(pi/2)(cos^2x)/(1+cos^2x)dx ,I_2=int_0^(pi/2)(sin^2x)/(1+sin^2x)dx` `I_3=int_0^(pi/2)(1+2cos^2xsin^2x)/(4+2cos^2xsin^2x)dx ,t h e n` `I_1=I_2> I_3` (b) `I_3> I_1=I_2` `I_1=I_2=I_3` (d) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

u=int_0^(pi/2)cos((2pi)/3sin^2x)dx and v=int_0^(pi/2) cos(pi/3 sinx) dx

int_(0)^(pi/2) (sin x dx)/(1+ cos^2 x ) is

int(1+cos2x)/(sin^(2)2x)dx :

Evaluate: int_0^(pi//2)1/((a^2cos^2x+b^2sin^2x)^2)dx

If I_1=int_0^pixf(sin^3x+cos^2x)dxa n d I_2=int_0^(pi/2)f(sin^3x+cos^2x)dx ,t h e nr e l a t eI_1a n dI_2

Q. int_0^pi(e^(cos^2x)( cos^3(2n+1) x dx, n in I

Prove that int_(0)^(pi)(xsin^(3)x)/(1+cos^(2)x)dx=pi/2(pi-2)

IfI_I=int_0^(pi//2)cos(sinx)dx ,I_2=int_0^(pi/2)sin(cosx)d ,a n dI_3=int_0^(pi/2)cosx dx , then find the order in which the values I_1,I_2,I_3, exist.