Home
Class 12
MATHS
Statement 1: The inverse of singular mat...

Statement 1: The inverse of singular matrix `A=([a_(i j)])_(nxxn),w h e r ea_(i j)=0,igeqji sB=([a i j-1])_(nxxn)dot` Statement 2: The inverse of singular square matrix does not exist.

Promotional Banner

Similar Questions

Explore conceptually related problems

Statement 1: The determinant of a matrix A=([a_(i j)])_(5xx5)w h e r ea_(i j)+a_(j i)=0 for all ia n dj is zero. Statement 2: The determinant of a skew-symmetric matrix of odd order is zero

Detemine the matrix A = (a_(ij))_(3 xx 2) if a_(ij) = 3i - 2j

The matrix A given by (a_(ij))_(2 xx 2) if a_(ij) = i - j is ………. .

Statement 1: If A=([a_(i j)])_(nxxn) is such that ( a )_(i j)=a_(j i),AAi ,ja n dA^2=O , then matrix A null matrix. Statement 2: |A|=0.

Find the inverse of the non-singular matrix A = [[0,5],[-1,6]] , by Gauss Jordan method.

Construct the matrix A = [a_(ij)]_(3xx3), where a_(ij)=i-j . State whether A is symmetric or skew- symmetric.

Statement 1: For a singular square matrix A ,A B=A C B=Cdot Statement 2; |A|=0,t h e nA^(-1) does not exist.

Construct the matrix A = [ a _(ij)] _(3xx3) , where a_(ij) i- j . State whether A is symmetric or skew-symmetric .

Construct an mxxn matrix A = [ a_(ij) ], where a_(ij) is given by a_(ij)=((i-2j)^(2))/(2) with m = 2, n = 3