Home
Class 12
MATHS
Let T >0 be a fixed real number. Suppos...

Let `T >0` be a fixed real number. Suppose `f` is continuous function such that for all `x in R ,f(x+T)=f(x)dot` If `I=int_0^Tf(x)dx ,` then the value of `int_3^(3+3T)f(2x)dx` is (a)`3/2I` (b) `2I` (c) `3I` (d) `6I`

A

`3/2I`

B

`2I`

C

`3I`

D

`6I`

Text Solution

Verified by Experts

Let `I_(1)=int_(3)^(3+3T) f(2x)dx`
Put `2x=y` so that `I_(1)=1/2int_(6)^(6+6T)f(y)dy`
`=1/2 6int_(0)^(T)dy` [ `:' f(x)` has period `T`]
`=3I`
Promotional Banner

Similar Questions

Explore conceptually related problems

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

A continuous real function f satisfies f(2x)=3(f(x)AAx in RdotIfint_0^1f(x)dx=1, then find the value of int_1^2f(x)dx

Let f be a one-to-one continuous function such that f(2)=3a n df(5)=7.G i v e nint_2^5f(x)dx=17 , then find the value of int_3^7f^(-1)(x)dx

Let f(x) be a continuous and periodic function such that f(x)=f(x+T) for all xepsilonR,Tgt0 .If int_(-2T)^(a+5T)f(x)dx=19(ag0) and int_(0)^(T)f(x)dx=2 , then find the value of int_(0)^(a)f(x)dx .

If int_a^b(f(x)-3x)dx=a^2-b^2 then the value of f(pi/6) is ___

If f(x) is continuous and int_(0)^(9)f(x)dx=4 , then the value of the integral int_(0)^(3)x.f(x^(2))dx is

If int_(0)^(x) f ( t) dt = x + int_(x)^(1) tf (t) dt , then the value of f(1) is

Let f: R->R be a continuous function and f(x)=f(2x) is true AAx in Rdot If f(1)=3, then the value of int_(-1)^1f(f(x))dx is equal to (a)6 (b) 0 (c) 3f(3) (d) 2f(0)

Let f(x) be continuous functions f: RvecR satisfying f(0)=1a n df(2x)-f(x)=xdot Then the value of f(3) is 2 b. 3 c. 4 d. 5